Calculus A for Economics

Syllabus and General Instructions

The final exam will be the same for all parallel sessions. The final is a closed exam. That is, you cannot use a calculator and cannot bring with you any notes of any kind.

The material for the course can be found in any calculus book. For example, you can look at

1) " Calculus: One and Several Variables", by Salas and Hille.

2) " Advanced Calculus". by M. Spiegel, Schaum's Series.

These books, and many more, can be found in the library of Exact Science.

If you intend to buy a book, we do recommend that you consult your instructor before doing that.

The syllabus given below, is the course syllabus. An instructor may choose to teach some of the material in a different order. If you find any mistakes, please tell your instructor. This way we can correct them for future generations.

Enjoy!!

1 Real Functions of One Variable

1.1 Week 1: Introduction and Basic Definitions

The Real numbers, Intervals, Absolute Value, The Triangular Inequality, Definition of a Function, Domain and Range of a Function, Piecewise-Defined Functions, Even and Odd Functions, One to One Functions.

1.2 Week 2: Operations between Functions

Elementary Operation between Functions, Composite Functions, Inverse of a Function, The Graphic Interpretation of the Inverse Function, Inverse of a One to One Functions, Exponential Functions, Logarithm Functions.

2 Limit of a Function, Continuous Functions

2.1 Week 3: Definition of a Limit

Intuitive Definition, Precise Definition of a Limit, Examples from the Definition, Uniqueness of the limit (with proof), Limits of Sum and Product of Limits (with proof), Limit of Quotient, One Side Limits.

2.2 Week 4: Limits at Infinity and Continuous Functions

The Sandwich Theorem (with proof), The Relation between One Side Limits and a Limit, Limits at Infinity, Definition of a Continuous Function at a Point, Continuous at a Open or Closed intervals, Continuity of Sum, Product, Quotient and Composite of Functions (with proofs).

2.3 Week 5: Properties of Continuous Functions

A Continuous Function in [a, b] such that f(a)f(b) < 0 Vanish in [a, b], A Continuous Function is Bounded in [a, b], Examples.

3 The Derivative

3.1 Week 6: Definition and Basic Properties

Definition of the Derivative, Examples, One Side Derivative, A Differentiable Function is Continuous (with proof), Derivative of Sum(with proof), Product (with proof), Quotient.

3.2 Week 7: Geometric Interpretations and the Chain Rule

The Derivative as a Slope, The Tangent and Normal Lines, The Derivative of Composite Functions: The Chain Rule (proof - optional), Derivative of the Logarithm Function.

3.3 Week 8: Implicit Differentiation

Implicit Function, Differentiation of Implicit Functions, The identity $\frac{dy}{dx}\frac{dx}{dy} = 1$, The Derivative of the Exponential Function, L'Hospital Rule.

3.4 Week 9: Applications of Derivative

If x_0 is an Extreme Point then $f'(x_0) = 0$ (with proof), Rolle's Theorem (with proof), The Mean Value Theorem (with proof), Examples, If f'(x) is zero in an Interval then f(x) is Constant on the Interval (with proof), The Mean Value Theorem of Cauchy (proof - optional), The Proof of L'Hospital Rule (optional).

4 Extreme Points and Applications

4.1 Week 10: Extreme Points

Definitions, Local and Global Maximum and Minimum Points, Domains of Increasing and Decreasing, Inflection Points, Concavity.

4.2 Week 11: Applications

The Second Derivative Test for Extreme Points (proof - optional), Minimum/Maximum Problems, Vertical and Horizontal Asymptotes.

4.3 Week 12: Drawing a Graph of Functions of One Variable